
CindyGL: Authoring GPU-based interactive
mathematical content

Aaron Montag and Jürgen Richter-Gebert?

Technical University of Munich, Germany
{montag,richter}@ma.tum.de,
http://www-m10.ma.tum.de

The final publication is available at link.springer.com
doi:10.1007/978-3-319-42432-3 44

Abstract. CindyJS is a framework for creating interactive (mathemat-
ical) content for the web. The plugin CindyGL extends this framework
and leverages WebGL for parallelized computations.
CindyGL provides access to the GPU fragment shader for CindyJS.
Among other tasks, the plugin CindyGL is used for real-time colorplots.
We introduce the main principles, concepts and application of CindyGL
and describe the encountered technical challenges. Special focus is put
on a novel visualization scheme that uses feedback loops, which were
among the motivating forces of developing CindyGL. They can be used
for a wide range of applications. Some of them are numerical simulations,
cellular automatons and fractal generation, which are described here.
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1 Introduction

The CindyJS project is a system for authoring dynamic mathematical web con-
tent (see [7]). It allows web based prototyping of mathematical experiments and
visualizations which can be used for research and demonstration. CindyScript is
a scripting language for CindyJS, that can be directly used in the HTML code.
For the design principles of CindyScript we refer to [4]. Its language specifications
are presented in the Cinderella 2 handbook [5].

In this article the plugin CindyGL for CindyJS is introduced. CindyGL is a
plugin for CindyJS which provides the high-level mathematically oriented user
with access to the shader language of the GPU.

In most other scenarios, knowledge of JavaScript and a shader language is
required and many lines of “boilerplate-code” have to be written in order to
build even small shader examples in WebGL. On the other hand, they often
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could be described with only few words. One aim of the WebGL integration
into CindyScript through the CindyGL plugin is overcoming the technical ob-
stacles that are typically inevitable in usage of OpenGL technologies on the web.
While writing CindyScript code, the user should not even become aware of using
WebGL.

The second aim of CindyGL is providing a simple fast-prototyping tool for
feedback loops on the GPU, that can be used for various novel algorithms. No
other web project that overcomes both of this difficulties is known to us.

The technical core of this plugin is a transcompiler, which can translate
CindyScript to OpenGL Shading Language (GLSL). Aside general-purpose com-
putations on the GPU, the transcompiler is so far used for rendering 2D-colorplots
on the GPU. If required, the 2D-colorplots can be animated in real-time as well.

This function is accessible via the colorplot command of CindyScript. A
set of running examples (with their source code) can be viewed on http://

cindyjs.org/CindyGL/.

2 The colorplot command

The CindyScript primitive operations for accessing CindyGL were designed such
that the boiler plate for creating WebGL-applications is minimized. For in-
stance, an animated plot of the interference of two circular waves can be ren-
dered by evaluating the following CindyScript code at every animation step:

t = seconds() - t0;

colorplot(

(sin(|A,#|-t) + sin(|B,#|-t)+2) * (1/2, 1/3, 1/4)

);

A static image of the animated result is depicted in Figure 1 (a). The expression
inside the colorplot command maps pixel coordinates (at position #) to colors
(encoded as a 3-component rgb vector). Here |A,#| and |B,#| are the distances
between the current pixel coordinate and the two points on the CindyJS canvas,
that can be interactively repositioned by drag and drop.

A phase portrait for the complex function f : C → C, z 7→ z7 − 1 can be
rendered as follows (the concept of complex phase portraits is explained in [9]):

f(z) := z^7 - 1;

colorplot(

hue(im(log(f(complex(#)))) / (2*pi));

);

This program outputs a GPU rendered image as in Figure 1 (b). The argument
of f(complex(#)) determines the color for the pixel with the coordinate #. Note
that the computation of complex numbers was inherently carried to the GPU,
which has no native support for complex calculus.

http://cindyjs.org/CindyGL/
http://cindyjs.org/CindyGL/
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Furthermore, sophisticated colorplots are possible as well. As an example, a
raycaster for algebraic surfaces can be written as a colorplot in CindyScript as
depicted in Figure 1 (c). Following the approach of [6], we compute the inter-
section of each view ray with the algebraic surface as the root of a polynomial
that is determined by an interpolation process. In CindyScript the interpola-
tion – a linear function that maps lists of evaluated function values to a vector
of polynomial coefficients – can be easily described as a matrix multiplication.
This matrix computation is coded high-level in CindyScript and transpiled to
the GPU.

Fig. 1. Screen shots of animations generated by the colorplot command: (a) Interfer-
ence of waves, (b) a complex phase portrait and (c) a raycaster for algebraic surfaces

3 Feedback Loops via CindyGL

The colorplot command was designed in a way that it is possible to write on
textures by a function passed as an argument. The textures then in turn can
be read in consecutive calls of colorplot with the imagergb-command. The
possibility to read and write texture data, immediately enables the creation of
feedback loops on the GPU.

By the term feedback loop we mean a system of a set of images that are
iteratively re-generated by using themselves. A “physical” example of a single-
image feedback loop is the “infinite tunnel” that becomes visible if one points a
camera at a screen which directly displays a live video recorded by the camera.

An example for a feedback loop in CindyGL can be seen here:

colorplot("julia", // plots to texture "julia"

z = complex(#); // if |z| < 2, take the color from texture "julia"

if(|z|<2, // at position z2 + c and make it slightly brighter

imagergb("julia", z^2+c) + (0.01, 0.02, 0.03),

(0, 0, 0) // if |z| ≥ 2, (z, f(z), f2(z), . . .) is not bounded;

) // display black.

);
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If the code is executed several times, a picture of a Julia-fractal for the
function f : z 7→ z2 + c progressively emerges on the texture julia. After
roughly 50 iterations a picture as in Figure 2 (a) becomes visible. The Julia-
fractal for a specific function depicts the points which remain bounded if the
function is iteratively applied to them. The fact that only one iteration per pixel
for each rendering step is computed makes the rendering process very fast and
enables a real-time escape-time based fractal visualization. Here, a direct and
smooth interaction with users changing the parameter c on the fly is possible,
even on mobile devices.

Figure 2 (b) shows a picture of Conway’s Game of Life, where cells of a 2-
dimensional grid can either be alive or dead. In each computation step, a cell can
die or be reborn according to the number of its living neighbors. Using black (0)
and white (1) pixels for dead and living cells respectively, this cellular automaton
can be simulated with CindyGL as follows:

// a function that reads the 80x80 texture "gol",

// assuming a torus like world.

get(x, y) := imagergb("gol", (mod(x, 80), mod(y, 80))).r;

newstate(x, y) := ( number = // number of living neighbors

get(x-1, y+1) + get(x, y+1) + get(x+1, y+1) +

get(x-1, y) + get(x+1, y) +

get(x-1, y-1) + get(x, y-1) + get(x+1, y-1);

if(get(x,y)==1, // if the cell lives and it has less than 2

// or more than 3 neighbors, it will die.

if((number < 2) % (number > 3), 0, 1),

// if a cell was dead, then 3 neighbors

// are required to be born.

if(number==3, 1, 0)

)

);

colorplot("gol", newstate(#.x, #.y)); //plots to texture "gol"

Here a texture "gol", which encodes the previous state, will be reused as
a basis for the computation of all the new states, which will be written to the
texture "gol" again.

Figure 2 (c) shows a simulation of a reaction-diffusion system using feedback
loops. It serves as an example how numerical simulations of 2-dimensional partial
differential equations can be computed in real time on the GPU. In this example,
and also many other numerical simulations, a very fine time discretization is
demanded. Since a single iteration step utilizing a feedback loop construction
can be computed very fast on the GPU, many iterations of the feedback loop
can be done before displaying a single frame. On today’s average hardware,
decent frame rates are still possible.

Feedback loops also give a natural framework to render limit sets on the
GPU. Visualizations of the limit sets of two dimensional iterated function systems
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Fig. 2. Visualizations generated by feedback loops: (a) a progressively built up Julia
fractal, (b) Conway’s Game of Life and (c) a reaction-diffusion model

(IFSs), which are described in [1], can be generated by iteratively applying a
slightly modified Hutchinson operator to a texture: A texture is iteratively re-
built as a composition of deformed copies of itself. This can be considered as a
feedback loop of a single texture and results of CindyGL implementations are
shown in Figure 3 (a) and (b).

By extending the feedback loop system containing a single texture to a sys-
tem containing multiple textures that are linked in a sophisticated manner, it is
also possible to visualize limit sets of certain Kleinian groups in real time. An
example image of such an CindyGL generated limit set of a Kleinian group is
depicted in Figure 3 (c). The required techniques are derivated and described in
detail in [2]. Summarizing the generation of Figure 3 (c), two Möbius transforma-
tions were chosen by “grandma’s recipe” from [3] to generate a free group. Then
a deterministic finite automaton was built that accepts the regular language of
the geodesic words of the language of the free group, i.e. the shortest words con-
sisting of the two generators and their inverses describing the group elements. By
transferring the states of this automaton to textures and the transition between
them to corresponding Möbius transformations that are used to generate each
of these textures, a complex interlinked system of textures is generated. Now by
iterating simultaneously the generation of these textures, one can prove that in
the limit an image of the limit set of the Kleinian group is attained.

CindyGL is a tool that can be used to built such interlinked systems of
textures with relatively little effort.

4 Technical Aspects

CindyJS is licensed under the Apache 2 license and can be obtained from https:

//github.com/cindyjs. The plugin CindyGL is integrated into the CindyJS
project.

One development aim for CindyGL was obtaining a performance that is com-
parable with the one of native WebGL applications. During real time animations,
the colorplot command is called many times within a second. Typically, the

https://github.com/cindyjs
https://github.com/cindyjs


6 Montag–Richter-Gebert

Fig. 3. Images of different limit sets generated by feedback loops: (a) an IFS generated
by two affine transformations, (b) an IFS generated by circle inversions and (c) a
Kleinian group

syntactic expression within the argument remains the same – only the values of
variables might change.

Performance preservation was mainly achieved by doing all the computations
that are demanded by an additional layer between a native WebGL application
and a CindyJS application only at the first time the colorplot-command is
called. During successive calls of colorplot (with the same arguments), a native
shader program is executed.

OpenGL Shading Language (GLSL) is the language which is used to run
specific programs on the GPU in WebGL. It is strongly typed. In contrast,
CindyScript has dynamic typing.

We have developed a transcompiler that is able to translate CindyScript
primitives into GLSL. During this process types of terms and variables in CindyJS
(e.g. real numbers, complex numbers, matrices, . . . ) are – if possible – automat-
ically detected and modeled to corresponding data structures on the GPU (e.g.
float, vec2, mat4, . . . ).

A partial order on the types has been introduced in order to capture sub-
type relations between types. A type is defined to be a subtype of another type
(for instance, real numbers are a subtype of complex numbers), if there is a
inclusion function from values of the subtype to the other type such that every
function having multiple signatures for different types commutes with all the
inclusion functions. Hence, the “weakest possible” type can always be chosen for
the calculations in order to save resources and obtain good performance.

When the function colorplot is called for the first time, the syntax tree
of the color expression and functions that are called within this expression are
traversed recursively in order to find out the terms that depend on the varying
pixel variable #. Those terms are suitable for a massive parallelization on the
GPU and are translated to GLSL via the introduced transcompiler. A fragment
shader is built in WebGL, that computes the corresponding expressions for each
pixel, while the other terms that are independent from # are calculated just
once on the CPU and passed to the GPU as uniforms. Since the segmentation
in parallelized code and CPU code is created automatically, this on the on hand
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eases the work of the programmer. On the other hand, it very often creates the
most general and performant split of the code.

A ping-pong approach is used for the feedback loops. If colorplot tries
to read and write on a texture at the same time, the texture will be stored
twice: One texture for reading and another target texture for writing. After the
function call, the two textures will be swapped. In the next call of colorplot

then recently written texture can be used as input texture.

5 Conclusion and outlook

Overall, the CindyGL project aims to provide an easy-to-use technical backbone
for a wide range of different mathematical visualizations.

CindyGL is not finished yet. Some primitive operations and data structures
from CindyScript are still missing. Also, an integration of the ideas of [8] is
planned. In particular, enabling live access to a camera is possible. Using a live
image of a camera-picture as input texture for a colorplot opens the door for
new educational concepts. The image can be easily deformed using CindyScript.
An analog design setup where a camera points to the currently displayed image
can be used to explain the concept of feedback loops. For a valuable educational
experience, the real world, that might consist of persons, patterns or a system
of mirrors for example, can be included in the setting. Results of a prototypical
setting are shown in Figure 4.

Fig. 4. Two fractals generated by analog feedback loops. (Using an integrated webcam
and a mirror)
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